This page contains practical examples of using PyBiorythm for various scenarios.
from datetime import datetime
from biorythm import BiorhythmCalculator
# Create calculator and generate chart
calc = BiorhythmCalculator()
birthdate = datetime(1990, 5, 15)
calc.generate_chart(birthdate)
# Interactive mode
python main.py
# Direct command
python main.py -y 1990 -m 5 -d 15
import json
import pandas as pd
# Generate 30 days of data
calc = BiorhythmCalculator(days=30)
json_data = calc.generate_timeseries_json(datetime(1990, 5, 15))
data = json.loads(json_data)
# Convert to DataFrame for analysis
df = pd.DataFrame(data['data'])
df['date'] = pd.to_datetime(df['date'])
# Find peak and low days
physical_peak = df.loc[df['physical'].idxmax()]
emotional_low = df.loc[df['emotional'].idxmin()]
print(f"Physical peak: {physical_peak['date']} ({physical_peak['physical']:.3f})")
print(f"Emotional low: {emotional_low['date']} ({emotional_low['emotional']:.3f})")
# Identify critical days (cycles near zero)
critical_threshold = 0.1
critical_days = df[
(abs(df['physical']) < critical_threshold) |
(abs(df['emotional']) < critical_threshold) |
(abs(df['intellectual']) < critical_threshold)
]
print("Critical days in the next 30 days:")
for _, day in critical_days.iterrows():
cycles = []
if abs(day['physical']) < critical_threshold:
cycles.append('Physical')
if abs(day['emotional']) < critical_threshold:
cycles.append('Emotional')
if abs(day['intellectual']) < critical_threshold:
cycles.append('Intellectual')
print(f"{day['date'].strftime('%Y-%m-%d')}: {', '.join(cycles)}")
This documentation is being actively developed. More examples will be added covering:
If you have useful examples to share, please contribute them via:
Next: Command Line Interface | Output Formats |